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Abstract
Using many-body Green function theory for thin ferromagnetic Heisenberg
films, we compare the static susceptibilities (transverse and parallel) calculated
for uniaxial single-ion anisotropy and exchange anisotropy, respectively.
Although there are qualitative differences in the results of these calculations with
respect to the temperature dependence of the easy and hard axis magnetizations
and susceptibilities, the calculated values of these observables are quantitatively
so similar that it is unlikely that experimental measurements could decide on
which type of anisotropy is acting in a real ferromagnetic film.

1. Introduction

Recently, Jensen et al [1] have reported measurements of the parallel and transverse
susceptibilities of a bilayer cobalt film having an in-plane uniaxial anisotropy. They analysed
their results with the help of a many-body Green function theory assuming an exchange
anisotropy and a value for the spin of S = 1/2. In a recent paper [2], we generalized
their theoretical model, extending it to multilayers and arbitrary spin. In both papers, an
exchange anisotropy was assumed because it is easier to treat than the single-ion anisotropy,
which requires a different decoupling procedure of the Green function hierarchy. Despite this
complication, it would be useful to have at our disposal results analogous to those in [2] but
with the single-ion anisotropy replacing the exchange anisotropy. A comparison of the two
cases would allow an evaluation of the robustness of the theoretical conclusions as well as
possibly identifying any qualitative differences which might enable an experiment to discern
which type of anisotropy is acting in a real film.
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Accordingly, in this paper we investigate the parallel and transverse susceptibilities for
arbitrary spin in multilayer systems, but we assume a single-ion anisotropy instead of an
exchange anisotropy. In keeping with the earlier work [1, 2], we use the Green function
formalism and neglect the dipole–dipole interaction, since it is nearly isotropic for the in-plane
case. Whereas an RPA decoupling is reasonable for the terms coming from the exchange
interaction and the exchange anisotropy, it leads to incorrect expressions for the single-ion
anisotropy terms. For the latter we therefore use the method proposed by Anderson and
Callen [3] at the level of lowest order in the Green function hierarchy. This is certainly an
adequate approximation for small anisotropies, as we have shown in [4] for the case of an
out-of-plane single-ion anisotropy of a monolayer by comparing with ‘exact’ quantum Monte
Carlo calculations. We refer the reader to the literature for a discussion of the roles of the single-
ion- [5–7] and exchange- [8] anisotropies with respect to reorientation of the magnetization
of a ferromagnetic film with an out-of-plane anisotropy as a function of temperature and film
thickness.

The paper is organized as follows. In section 2 we explain the model and establish the
Green function formalism. Section 3 displays the numerical results and presents a discussion of
the similarities and differences between the single-ion and exchange anisotropies. In section 4
we summarize the results and present our conclusions.

2. The model and the Green function formalism

The general formalism parallels our previous work, differing in the terms containing the single-
ion anisotropy and in the way in which the decoupling of the Green function hierarchy is
implemented. The Hamiltonian consists of an isotropic Heisenberg exchange interaction with
strength Jkl between nearest neighbour lattice sites, a second-order in-plane single-ion lattice
anisotropy with strength K2,k , and an external magnetic field B = (Bx, B y, Bz):

H = − 1
2

∑
〈kl〉

Jkl (S−
k S+

l + Sz
k Sz

l ) −
∑

k

K2,k(Sz
k )

2 −
∑

k

(
1
2 B−S+

k + 1
2 B+S−

k + Bz Sz
k

)
. (1)

Here the notation S±
k = Sx

k ± iSy
k and B± = Bx ± iB y is introduced, where k and l are lattice

site indices and 〈kl〉 indicates summation over nearest neighbours only. We restrict ourselves
to a simple cubic lattice with the in-plane lattice directions taken as the x- and z-axes and a
lattice constant of unity. For generality, we retain the y-component of the field, B y, which will
be set to zero later on.

In order to treat the problem for general spin S, we need the following Green functions in
the energy representation:

Gα,mn
i j,η (ω) = 〈〈Sα

i ; (Sz
j)

m(S−
j )n〉〉ω,η, (2)

where α = (+,−, z) takes care of all directions in space, η = ±1 refers to the anticommutator
or commutator Green functions,respectively, and n � 1, m � 0 are positive integers,necessary
for dealing with higher spin values S.

The exact equations of motion are

ωGα,mn
i j,η (ω) = Aα,mn

i j,η + 〈〈[Sα
i ,H]−; (Sz

j )
m(S−

j )n〉〉ω,η (3)

with the inhomogeneities

Aα,mn
i j,η = 〈[Sα

i , (Sz
j )

m(S−
j )n]η〉, (4)

where 〈· · ·〉 = Tr(· · · e−βH)/Tr(e−βH). The equations are given explicitly by
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(5)

After solving these equations, the components of the magnetization can be determined
from the Green functions via the spectral theorem. A solution is possible only after obtaining
a closed system of equations by decoupling the higher-order Green functions on the right-hand
sides. Retaining only the lowest-order Green functions, we terminate the hierarchy for the
exchange-interaction terms using the generalized Tyablikov- (or RPA-) decoupling:

〈〈Sα
i Sβ

k ; (Sz
j)

m(S−
j )n〉〉η � 〈Sα

i 〉Gβ,mn
k j,η + 〈Sβ

k 〉Gα,mn
i j,η . (6)

The terms from the single-ion anisotropy have to be decoupled differently, because an RPA
decoupling leads to unphysical results; e.g. for spin S = 1/2, the terms due to the single-ion
anisotropy do not vanish in the RPA, as they should do, because in this case

∑
i K2,i 〈(Sz

i )
2〉

is a constant and should not influence the equations of motion. In the appendix of [7], we
investigated different decoupling schemes proposed in the literature, e.g. those of Lines [9] or
that of Anderson and Callen [3], which should be reasonable for single-ion anisotropies that
are small compared to the exchange interaction. We found the Anderson–Callen decoupling to
be the most suitable. It consists in implementing the suggestion of Callen [10] to improve the
RPA by including the diagonal terms arising from the single-ion anisotropy in the decoupling.
This leads to

〈〈(S±
i Sz

i + Sz
i S±

i ); (Sz
j)

m(S−
j )n〉〉η � 2〈Sz

i 〉
(

1 − 1

2S2
[S(S + 1) − 〈Sz

i Sz
i 〉]
)

G±,mn
i j,η . (7)

This term vanishes for S = 1/2 as it should.
For a ferromagnetic film with N layers, one obtains, after a Fourier transform to momentum

space, 3N equations of motion for a 3N-dimensional Green function vector Gmn:

(ω1 − Γ)Gmn = Amn, (8)

where 1 is the 3N × 3N unit matrix. The Green function vectors and inhomogeneity vectors
each consist of N three-dimensional subvectors which are characterized by the layer indices i
and j :

Gmn
i j (k, ω) =




G+,mn
i j (k, ω)

G−,mn
i j (k, ω)

Gz,mn
i j (k, ω)


 , Amn

i j =



A+,mn
i j

A−,mn
i j

Az,mn
i j


 . (9)

The equations of motion are then expressed in terms of these layer vectors, and 3 × 3
submatrices Γi j of the 3N × 3N matrix Γ:
ω1 −




Γ11 Γ12 . . . Γ1N

Γ21 Γ22 . . . Γ2N

. . . . . . . . . . . .

ΓN1 ΓN2 . . . ΓN N








G1 j

G2 j

. . .

GN j


 =




A1 jδ1 j

A2 jδ2 j

. . .

AN jδN j


 , j = 1, . . . , N. (10)

After the decoupling procedures (6) and (7), the Γ-matrix reduces to a band matrix with zeros
in the Γi j submatrices, when j > i + 1 and j < i − 1. The diagonal submatrices Γii are of
size 3 × 3 and have the form

Γii =
( H z

i 0 −H +
i

0 −H z
i H −

i− 1
2 H −

i
1
2 H +

i 0

)
, (11)
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where

H z
i = Zi + 〈Sz

i 〉Jii (q − γk),

Zi = Bz
i + Ji,i+1〈Sz

i+1〉 + Ji,i−1〈Sz
i−1〉 + K2,i 2〈Sz

i 〉
(

1 − 1

2S2
[S(S + 1) − 〈Sz

i Sz
i 〉]
)

,

H ±
i = B±

i + 〈S±
i 〉Jii (q − γk) + Ji,i+1〈S±

i+1〉 + Ji,i−1〈S±
i−1〉.

(12)

For a square lattice with the lattice constant taken to be unity, γk = 2(cos kx + cos ky), and
q = 4 is the number of intra-layer nearest neighbours.

The 3 × 3 off-diagonal submatrices Γi j for j = i ± 1 are of the form

Γi j =
(−Ji j〈Sz

i 〉 0 Ji j〈S+
i 〉

0 Ji j〈Sz
i 〉 −Ji j〈S−

i 〉
1
2 Ji j〈S−

i 〉 − 1
2 Ji j〈S+

i 〉 0

)
. (13)

To calculate the components of the magnetization of the monolayer, one can use the
spectral theorem with the commutator Green functions as in [7] for the case of spin S = 1 and
an out-of-plane single-ion anisotropy. In order to obtain sufficient equations, it is necessary to
include equations coming from the condition that the commutator Green functions be regular
at ω = 0 (the regularity conditions).

The treatment of multilayers is only practicable with the eigenvector method developed
in [6]. The essential features are as follows. One starts with a transformation, which
diagonalizes the Γ-matrix of equation (8):

LΓR = Ω, (14)

where Ω is a diagonal matrix with eigenvalues ωτ (τ = 1, . . . , 3N). For the problem above
it turns out that there is one eigenvalue equal to zero for each layer, which has to be handled
appropriately. The transformation matrix R and its inverse R−1 = L are obtained from the
right eigenvectors of Γ as columns and from the left eigenvectors as rows, respectively. These
matrices are normalized to unity: RL = LR = 1.

Multiplying the equation of motion (8) from the left by L and inserting 1 = RL, one finds

(ω1 − Ω)LGmn
η = LAmn

η . (15)

Defining Gmn
η = LGmn

η and Amn
η = LAmn

η , one obtains

(ω1 − Ω)Gmn
η = Amn

η . (16)

Gmn
η is a vector of new Green functions, each component τ of which has but a single pole,

Gmn,τ
η = Amn,τ

η

ω − ωτ

. (17)

This is the important point because it allows application of the spectral theorem, e.g. [11], to
each component separately. We obtain for the component τ of correlation vector Cmn = LCmn

(where Cmn = 〈(Sz)m(S−)n Sα〉 with (α = +,−, z))

Cmn,τ = Amn,τ
η

eβωτ + η
+

1

2
(1 − η)

1

2
lim
ω→0

ω
Amn,τ

η=+1

ω − ωτ

. (18)

We emphasize that when η = −1, which we use in the following, the second term of this
equation, which is due to the anticommutator Green function, has to be taken into account.
This term occurs for ωτ = 0 and can be simplified by using the relation between anticommutator
and commutator:

Amn,0
η=+1 = Amn,0

η=−1 + 2Cmn,0 = L0(Amn
η=−1 + 2Cmn), (19)

where the index τ = 0 refers to the eigenvector with ωτ = 0.
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The term L0 Amn
η=−1 = 0 vanishes due to the fact that the commutator Green function has

to be regular at the origin:

lim
ω→0

ωGα,mn
η=−1 = 0, (20)

which leads to the regularity conditions

H x A+,mn
η=−1 + H x A−,mn

η=−1 + 2H z Az,mn
η=−1 = 0. (21)

For details, see [6].
This is equivalent to

L0 Amn
η=−1 = 0, (22)

because the left eigenvector of the Γ-matrix with eigenvector zero has the structure

L0 ∝ (H x, H x, 2H z), (23)

as can be seen analytically. For more details concerning the use of the regularity conditions,
see [2, 6].

The equations for the correlations are obtained by multiplying equation (18) from the left
with R and using equation (22); i.e.

C = RELA + R0L0C, (24)

where E is a diagonal matrix with matrix elements Ei j = δi j(eβωi − 1)−1 for eigenvalues
ωi �= 0, and 0 for eigenvalues ωi = 0.

This set of equations has to be solved self-consistently together with the regularity
conditions (21). This determines the magnetizations and the moments of the magnetizations
〈(Sz)n〉 for n = 1, . . . , 2S+1, where S is the total spin. For details see appendix A of [8], where
an analogous set of similar equations is given more explicitly for the case of the out-of-plane
situation.

The susceptibilities with respect to the easy (χzz) and hard (χxx ) axes are calculated as
differential quotients:

χzz = (〈Sz(Bz)〉 − 〈Sz(0)〉)/Bz

χxx = (〈Sx (Bx)〉 − 〈Sx (0)〉)/Bx,
(25)

where the use of Bz(x) = 0.01/S turns out to be small enough; see also [2].

3. Numerical results

In this section we compare numerical results obtained with the single-ion anisotropy with those
from the exchange anisotropy, for which the relevant equations were derived in [2]. As the
single-ion anisotropy is not active for S = 1/2 we show results for S � 1. In an attempt
to obtain universal curves in [2] (i.e. independent of the spin quantum number S), we scaled
the parameters (Bx(z), J, D) in the Hamiltonian as B̃ x(z)/S = Bx(z), J̃/S(S + 1) = J , and
D̃/S(S + 1) = D (D being the strength of the exchange anisotropy). In the present paper, we
also scale the strength of the single-ion anisotropy: K̃2/(S − 1/2) = K2. This is shown in [6]
to be the proper scaling because it leads to the correct limit, limT →0(K2(T )/K2(0)) = 1, when
calculating the temperature-dependent anisotropy by minimizing the free energy with respect
to the equilibrium orientation angle of the magnetization.
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Figure 1. The magnetization 〈Sz〉/S of a ferromagnetic spin S = 1 Heisenberg monolayer for
a square lattice shown as function of the temperature. A comparison is made between Green
function (indicated by RPA) calculations with exchange anisotropy D = 5 (crosses), and the
single-ion anisotropy (K2 = 5.625) (open squares), in the Anderson–Callen approximation. We
also show the quantities 100 ∗ 〈Sx 〉/(S + 1) for the exchange anisotropy and 100 ∗ 〈Sx 〉/S for the
single-ion anisotropy; the factor 100 is introduced to make the curves visible. The corresponding
results for mean field theory (MFT) calculations are also displayed.

3.1. The monolayer with arbitrary spin

In order to compare results obtained with the single-ion anisotropy with those of the exchange
anisotropy, we set the strength of the single-ion anisotropy to K2 = 5.625 for a square lattice
monolayer with spin S = 1, so that the easy axis magnetization 〈Sz〉/S lies as close as possible
to the magnetization obtained with the exchange anisotropy (D = 5) used previously [2].
The exchange interaction parameter is J = 100, and there is a small magnetic field in the
x-direction, Bx = 0.01/S, which stabilizes the calculation. The comparison is shown in
figure 1.

It is surprising that the results for the easy axis magnetization 〈Sz〉 are very similar over the
whole temperature range, although the physical origin for the anisotropies is very different.
An analogous result was observed for the out-of plane situation discussed in [8]. For the
exchange anisotropy the hard axis magnetization is a constant below the Curie temperature,
whereas for the single-ion anisotropy it rises slightly up to the Curie temperature. In [2] it was
shown analytically that the hard axis magnetization for the exchange anisotropy is universal
for a scaling 〈Sx 〉/(S + 1). For the single-ion anisotropy, a scaling 〈Sx 〉/S is found to be more
appropriate. Comparison with the corresponding mean field (MFT) calculations, obtained by
putting γk = 0 in equation (12), shows the well-known shift to larger Curie temperatures (by
a factor of about two for the monolayer with the present choice of the parameters) due to the
missing magnon excitations.

In figures 2 and 3 we show the easy and hard axis magnetizations for a monolayer with
different spin values S. Whereas in figure 2 one observes a nearly perfect scaling for the RPA
calculations with the exchange anisotropy (S = 1/2, 1, 3/2, 2, 3, 4, 6, 13/2, from [2]) and a
universal Curie temperature TC(S) for RPA and MFT, this is not the case for the corresponding
results with the single-ion anisotropy shown for S = 1, 3/2, 4, 5 in figure 3, although the
violation of scaling is not dramatic.
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Figure 2. The magnetizations 〈Sz〉/S of spin S = 1/2, 1, 3/2, 2, 3, 4, 6, 13/2 Heisenberg
monolayers for a square lattice are shown as functions of the temperature, from [2]. A comparison
is made between Green function (RPA) calculations and the results of mean field theory (MFT),
using the exchange anisotropy strength, D = 5. Also shown is the hard axis magnetization, which
scales to a universal curve 100∗〈Sx 〉/(S +1), where the factor 100 is introduced to make the curves
visible.

Figure 3. The magnetization 〈Sz 〉/S of ferromagnetic spin S = 1, 2, 3/2, 5 Heisenberg monolayers
for a square lattice as a function of the temperature. For Green function (RPA) calculations using
the single-ion anisotropy strength of K2 = 5.625 and the corresponding results of mean field theory
(MFT). Also shown are the quantities 100∗〈Sx 〉/S; the factor 100 is introduced to make the curves
visible.

Turning to the inverse easy and hard axes susceptibilities χ−1
zz and χ−1

xx , we find very
similar results for the exchange anisotropy and the single-ion anisotropy. In particular, in the
paramagnetic region (T > TCurie), the inverse susceptibilities as a function of temperature are
curved owing to the presence of spin waves,whereas the corresponding MFT calculations show
a Curie–Weiss (linear in temperature) behaviour. There is slightly less universal behaviour for
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Figure 4. ‘Universal’ inverse easy axis susceptibilities χ−1
zz ∗ S(S + 1) of an in-plane anisotropic

ferromagnetic square lattice Heisenberg monolayer as functions of the temperature for single-ion
anisotropy and spins S = 5, 2, 3/2, 1. A comparison is made between Green function (RPA) and
mean field theory (MFT) calculations.

Figure 5. ‘Universal’ inverse hard axis susceptibilities χ−1
xx ∗ S(S + 1) of an in-plane anisotropic

ferromagnetic square lattice Heisenberg monolayer as functions of the temperature for single-ion
anisotropy and spins S = 5, 2, 3/2, 1. A comparison is made between Green function (RPA) and
mean field theory (MFT) calculations.

the single-ion anisotropy (figures 4 and 5) than for the exchange anisotropy (figures 2 and 3
of [2]). This is connected with the fact that the exchange anisotropy exhibits universal values
for the Curie temperatures T RPA

C (S) and T MFT
C (S), which is not strictly the case for the single-

ion anisotropy, (figure 3). We were also able to show analytically in [2] that χ−1
xx ∗ S(S + 1)

is universal for T < TC for the exchange anisotropy; this is not the case for the single-ion
anisotropy. The only difference is in the curves for the imperfectly scaled Green function results
for χ−1

zz : for the exchange anisotropy, the curve with the lowest spin value lies to the left of the
curves with the higher spin values, whereas the converse is true for the exchange anisotropy.
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Figure 6. Curie temperatures of ferromagnetic spin S = 1 multilayers shown as functions of
the film thickness for RPA and MFT with exchange (open circles) and single-ion (open squares)
anisotropies.

This is not a very pronounced effect and does not lead to a significant difference between the
results for the various anisotropies.

3.2. Multilayers at fixed spin S = 1

In treating multilayers with the exchange anisotropy in [2], we considered only the case of
S = 1/2. The single-ion anisotropy term in the Hamiltonian is a constant for S = 1/2;
therefore it is not active when calculating the magnetization, so we have to use a larger spin
here. In the following, we use spin S = 1 as an example, but we also have results for S > 1
which scale with respect to the spin in the same way as in the monolayer case.

In figure 6 we compare the Curie temperatures for S = 1 multilayers for exchange and
single-ion anisotropies in Green function theory and MFT, using for each layer the same
parameters as for the monolayer. Remember that the parameters are fixed such that the Curie
temperatures for both types of anisotropies coincide for the monolayer. The Curie temperatures
for the multilayers N = 2, . . . , 19 (for N = 19 one is already close to the bulk limit) are only
slightly lower for the single-ion anisotropy than those for the exchange anisotropy.

In figures 7 and 8 we compare easy and hard axis inverse susceptibilities for the multilayer
case calculated with single-ion and exchange anisotropy. In order to avoid cluttering the figures
we restrict ourselves to a multilayer with N = 9 layers and spin S = 1. For N > 9 the
corresponding curves would shift only slightly in accordance with the saturation of TC with
increasing film thickness (see figure 6). We display only the RPA results for the multilayer
(N = 9) and compare with the RPA monolayer (N = 1) result. Again there is no significant
difference in the results for both anisotropies. We do not plot the corresponding mean field
results which are shifted to higher temperatures, and show in the paramagnetic region only a
linear in T Curie–Weiss behaviour, whereas the RPA results have curved shapes owing to the
influence of spin waves, which are completely absent in MFT.

4. Summary and conclusions

We have employed a many-body Green function formalism to calculate in-plane anisotropic
static susceptibilities of ferromagnetic Heisenberg films using the single-ion anisotropy and
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Figure 7. The inverse easy axis susceptibilities χ−1
zz of ferromagnetic films in RPA for spin S = 1

for a monolayer (N = 1) and a multilayer (N = 9) as functions of the temperature for single-ion
and exchange anisotropies.

Figure 8. The inverse hard axis susceptibilities χ−1
xx of ferromagnetic films in RPA for spin S = 1

for a monolayer (N = 1) and a multilayer (N = 9) as functions of the temperature for single-ion
and exchange anisotropies.

have compared the results with previous calculations [2] for an exchange anisotropy. Although
both kinds of anisotropy are of very different physical origin, it is possible, by fitting the
strengths of the anisotropies properly, to obtain nearly identical values for the easy axis
magnetizations over the complete temperature range for an S = 1 monolayer. Using the
parameters obtained in this way for monolayers with higher spin values and for multilayers,
we looked for differences in the results of calculations with both kinds of anisotropy.

By using scaled variables we find a fairly universal behaviour (independent of the
spin quantum number S) of easy and hard axis magnetizations and inverse susceptibilities.
Universality holds better for the exchange anisotropy; for example, we find a universal Curie
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temperature TC(S) for RPA and MFT. The scaling is not as perfect for the single-ion anisotropy,
but there are no dramatic deviations which might enable an experiment to distinguish between
the two types of anisotropy. The general statement made in [2] that it is sufficient to do a
calculation for a particular S and then to apply scaling to obtain the results for other spin values
remains valid to a large extent for the single-ion anisotropy. It also remains true in principle
that the measurement of the hard axis susceptibility together with the Curie temperature allows
one to obtain information about the parameters of the model, the exchange interaction and
the anisotropy strengths. One should, however, keep in mind that the quantitative results of
the present calculations correspond to a square lattice. They could change significantly for
other lattice types. Further changes could result from the use of layer-dependent exchange
interactions and anisotropies. Such calculations are possible, because the numerical program
is written in such a way that layer-dependent coupling constants can be used.

As a general result, we state that our investigations up to now have not led to any significant
quantitative differences for the calculated observables (easy and hard axis magnetizations and
susceptibilities) when using on the one hand the single-ion anisotropy and on the other hand
the exchange anisotropy. Therefore, it is not possible on the basis of our results to propose an
experiment that could decide which kind of anisotropy is acting in a real ferromagnetic film.

References

[1] Jensen P J, Knappmann S, Wulfhekel W and Oepen H P 2003 Phys. Rev. B 67 184417
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[6] Fröbrich P, Jensen P J, Kuntz P J and Ecker A 2000 Eur. Phys. J. B 18 579
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